186 research outputs found

    Unusual DNA binding modes for metal anticancer complexes

    Get PDF
    DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophobic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes

    Photoactivation of trans diamine platinum complexes in aqueous solution and effect on reactivity towards nucleotides

    Get PDF
    We show that UVA irradiation (365 nm) of the Pt-IV complex trans,trans,trans-[(PtCl2)-Cl-IV(OH)(2)(dimethylamine) (isopropylamine)] (1), induces reduction to Pt-II photoproducts. For the mixed amine Pt-II complex, trans[(PtCl2)-Cl-II(isopropylamine)(methylamine)] (2), irradiation at 365 nm increases the rate and extent of hydrolysis, triggering the formation of diaqua species. Additionally, irradiation increases the extent of reaction of complex 2 with guanosine-5'-monophosphate and affords mainly the bis-adduct, while reactions with adenosine-5'-monophosphate and cytidine-5'-monophosphate give rise only to mono-nucleotide adducts. Density Functional Theory calculations have been used to obtain insights into the electronic structure of complexes 1 and 2, and their photophysical and photochemical properties. UVA-irradiation can contribute to enhanced cytotoxic effects of diamine platinum drugs with trans geometry

    Photoactivatable organometallic pyridyl ruthenium(II) arene complexes

    Get PDF
    The synthesis and characterization of a family of piano-stool RuII arene complexes of the type [(η6-arene)Ru(N,N′)(L)][PF6]2, where arene is p-cymene (p-cym), hexamethylbenzene (hmb), or indane (ind), N,N′ is 2,2′-bipyrimidine (bpm), 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendio), or 4,7-diphenyl-1,10-phenanthroline (bathophen), and L is pyridine (Py), 4-methylpyridine (4-MePy), 4-methoxypyridine (4-MeOPy), 4,4′-bipyridine (4,4′-bpy), 4-phenylpyridine (4-PhPy), 4-benzylpyridine (4-BzPy), 1,2,4-triazole (trz), 3-acetylpyridine (3-AcPy), nicotinamide (NA), or methyl nicotinate (MN), are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)(4-MePy)]2+ (2), [(η6-p-cym)Ru(bpm)(4-BzPy)]2+ (6), [(η6-p-cym)Ru(bpm)(trz)]2+ (7), [(η6-p-cym)Ru(phen)(Py)]2+ (10), and [(η6-ind)Ru(bpy)(Py)]2+ (13). These complexes can selectively photodissociate the monodentate ligand (L) when excited with UVA or white light, allowing strict control of the formation of the reactive aqua species [(η6-arene)Ru(N,N′)(OH2)]2+ that otherwise would not form in the dark. The photoproducts were characterized by UV–vis absorption and 1H NMR spectroscopy. DFT and TD-DFT calculations were employed to characterize the excited states and to obtain information on the photochemistry of the complexes. All the RuII pyridine complexes follow a relatively similar photochemical L-ligand dissociation mechanism, likely to occur from a series of 3MC triplet states with dissociative character. The photochemical process proved to be much more efficient when UVA-range irradiation was used. More strikingly, light activation was used to phototrigger binding of these potential anticancer agents with discriminating preference toward 9-ethylguanine (9-EtG) over 9-ethyladenine (9-EtA). Calf thymus (CT)-DNA binding studies showed that the irradiated complexes bind to CT-DNA, whereas the nonirradiated forms bind negligibly. Studies of CT-DNA interactions in cell-free media suggest combined weak monofunctional coordinative and intercalative binding modes. The RuII arene complexes [(η6-p-cym)Ru(bpm)(Py)]2+ (1), [(η6-p-cym)Ru(bpm)(4-MeOPy)]2+ (3), [(η6-p-cym)Ru(4,4′-bpy)]2+ (4), [(η6-hmb)Ru(bpm)(Py)]2+ (8), [(η6-ind)Ru(bpm)(Py)]2+ (9), [(η6-p-cym)Ru(phen)(Py)]2+ (10), [(η6-p-cym)Ru(bathophen)(Py)]2+ (12), [(η6-p-cym)Ru(bpm)(NA)]2+ (15), and [(η6-p-cym)Ru(bpm)(MN)]2+ (16) were cytotoxic toward A2780 human ovarian cancer cell line in the absence of photoirradiation (IC50 values in the range of 9.0–60 μM)

    Bipyrimidine ruthenium(II) arene complexes : structure, reactivity and cytotoxicity

    Get PDF
    The synthesis and characterization of complexes [(η6-arene)Ru(N,N′)X][PF6], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N′ is 2,2′-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)I][PF6] and [(η6-etb)Ru(bpm)Cl][PF6]. Complexes in which N,N′ is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The RuII arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-p-cym)Ru(bpm)Br][PF6], [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)Br][PF6] and [(η6-bip)Ru(bpm)I][PF6] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK a* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-hmb)Ru(bpm)Cl]+, [(η6-ind)Ru(bpm)Cl]+, [(η6-thn)Ru(bpm)Cl]+, [(η6-p-cym)Ru(phen)Cl]+ and [(η6-p-cym)Ru(bathophen)Cl]+ in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η6-p-cym)Ru(bpm)(9-EtG-N7)][PF6]2 shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η6-p-cym)Ru(bpm)Cl][PF6] and [(η6-p-cym)Ru(phen)Cl][PF6] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes

    Use of top-down and bottom-up fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs

    Get PDF
    Calmodulin (CaM) is a highly conserved, ubiquitous, calcium-binding protein; it binds to and regulates many different protein targets, thereby functioning as a calcium sensor and signal transducer. CaM contains 9 methionine (Met), 1 histidine (His), 17 aspartic acid (Asp), and 23 glutamine acid (Glu) residues, all of which can potentially react with platinum compounds; thus, one-third of the CaM sequence is a possible binding target of platinum anticancer drugs, which represents a major challenge for identification of specific platinum modification sites. Here, top-down electron capture dissociation (ECD) was used to elucidate the transition metal–platinum(II) modification sites. By using a combination of top-down and bottom-up mass spectrometric (MS) approaches, 10 specific binding sites for mononuclear complexes, cisplatin and [Pt(dien)Cl]Cl, and dinuclear complex [{cis-PtCl2(NH3)}2(μ-NH2(CH2)4NH2)] on CaM were identified. High resolution MS of cisplatin-modified CaM revealed that cisplatin mainly targets Met residues in solution at low molar ratios of cisplatin–CaM (2:1), by cross-linking Met residues. At a high molar ratio of cisplatin:CaM (8:1), up to 10 platinum(II) bind to Met, Asp, and Glu residues. [{cis-PtCl2(NH3)}2(μ-NH2(CH2)4NH2)] forms mononuclear adducts with CaM. The alkanediamine linker between the two platinum centers dissociates due to a trans-labilization effect. [Pt(dien)Cl]Cl forms {Pt(dien)}2+ adducts with CaM, and the preferential binding sites were identified as Met51, Met71, Met72, His107, Met109, Met124, Met144, Met145, Glu45 or Glu47, and Asp122 or Glu123. The binding of these complexes to CaM, particularly when binding involves loss of all four original ligands, is largely irreversible which could result in their failure to reach the target DNA or be responsible for unwanted side-effects during chemotherapy. Additionally, the cross-linking of cisplatin to CaM might lead to the loss of the biological function of CaM or CaM–Ca2+ due to limiting the flexibility of the CaM or CaM–Ca2+ complex to recognize target proteins or blocking the binding region of target proteins to CaM

    Determining the Role of Fe-Doping on Promoting the Thermochemical Energy Storage Performance of (Mn1-xFex)(3)O-4 Spinels

    Get PDF
    Mn oxides are promising materials for thermochemical heat store, but slow reoxidation of Mn3O4 to Mn2O3 limits efficiency. In contrast, (Mn1-xFex)(3)O-4 oxides show an enhanced transformation rate, but fundamental understanding of the role played by Fe cations is lacking. Here, nanoscale characterization of Fe-doped Mn oxides is performed to elucidate how Fe incorporation influences solid-state transformations. X-ray diffraction reveals the presence of two distinct spinel phases, cubic jacobsite and tetragonal hausmannite for samples with more than 10% of Fe. Chemical mapping exposes wide variation of Fe content between grains, but an even distribution within crystallites. Due to the similarities of spinels structures, high-resolution scanning transmission electron microscopy cannot discriminate unambiguously between them, but Fe-enriched crystallites likely correspond to jacobsite. In situ X-ray absorption spectroscopy confirms that increasing Fe content up to 20% boosts the reoxidation rate, leading to the transformation of Mn2+ in the spinel phase to Mn3+ in bixbyite. Extended X-ray absorption fine structure shows that Fe-O length is larger than Mn-O, but both electron energy loss spectroscopy and X-ray absorption near edge structure indicate that iron is always present as Fe3+ in octahedral sites. These structural modifications may facilitate ionic diffusion during bixbyite formation.The authors thank the financial support from "Ramon Areces" Foundation (project SOLARKITE), Comunidad de Madrid and European Structural Funds (project ACES2030 P2018/EMT-4319), and University of Cadiz and European Structural Funds (project FEDER-UCA18-107139). A.J.C. thanks the financial support by Juan de la Cierva Formacion Program (MICINN), grant FJCI-2017-33967. The authors acknowledge ALBA-CELLS Synchrotron facility for granting beamtime at CLAESS (experiment 2016021666-2) and Electron Microscopy division located in the Servicios Centrales de Investigacion Cientifica y Tecnologica (SC-ICYT) of the University of Cadiz. Assistance of Dr. Laura Simonelli during the XAS measurements in ALBA is fully appreciated

    Photoactive platinum(II) azopyridine complexes

    Get PDF
    Platinum(II) complexes containing the strong π-acceptor N,N-chelating ligand phenylazopyridine (Ph-azpy) [Pt(p-R-Ph-azpy)X2], R = H, NMe2 or OH, X = Cl or N3, have been synthesized and characterized to explore the effects of monodentate ligands and phenyl substituents on their absorption spectra and photoactivation. Time-dependent density functional theory calculations showed that the complexes have a low-lying unoccupied orbital with strong σ-antibonding character toward the majority of the coordination bonds. The UV–visible absorption bands were assigned as mainly ligand-centered or metal-to-ligand charge-transfer transitions, with strong contributions from the chlorido and azido groups. In complexes with substituted Ph-azpy ligands, σ-donation from NMe2 and OH/O– groups results in a redshift of the main absorption bands compared with unsubstituted Ph-azpy complexes. The diazido complexes are photoactive in solution upon irradiation with either UVA or visible light for R = H or NMe2, or UVA only when R = OH/O–. Intriguingly, the phenolate group of the latter complex undergoes very slow protonation in solution. Biological screening was limited by poor solubility; however, initial tests showed that the phenolato diazido complex is rapidly taken up into the nuclei of HaCaT keratinocytes, which are stained intensely blue, and its cytotoxicity is increased upon irradiation with UVA light
    • …
    corecore